Total Power International, Inc.

MIW06 SERIES

DC/DC CONVERTER 6W, DIP Package

FEATURES

- DIP-24 Plastic Package
- Wide 2:1 Input Range
- High Efficiency up to 84%
- Operating Temp. Range -40°C to +85°C
- Overload Protection
- I/O-Isolation Voltage 1500VDC (opt. 3000VDC)
- Input Filter meets EN 55022, class A and FCC, level A
- ► 3 Years Product Warranty

PRODUCT OVERVIEW

The MIW06 series is a new range of high performance dc-dc converter modules with6W output power, featuring wide 2:1 input voltage ranges and tight output voltage regulation. The product comes in a DIP-24 package with industry standard footprint.

NEW

Excellent efficiency allows an operation temperature range of -40°C to +85°C (with derating). Standard features include overload protection.

i ypical applications for these cost optimized converters are battery powered equipment, instrumentation	, datacom and industrial electronics.

Model	Input	Output	Output	Input Current		Reflected	Max. capacitive	Efficiency			
Number	Voltage	Voltage	Current			Ripple	Load	(typ.)			
	(Range)		Max.	@Max. Load	@No Load	Current		@Max. Load			
	VDC	VDC	mA	mA(typ.)	mA(typ.)	mA(typ.)	uF	%			
MIW06-12S033		3.3	1200	440			470	75			
MIW06-12S05		5	1200	641			470	78			
MIW06-12S12		12	500	609			100	82			
MIW06-12S15	12	15	400	609	40	30	100	82			
MIW06-12S24	(9 ~ 18)	24	250	595	40	30	30	50	30	47	84
MIW06-12D05		±5	±500	534					100#	78	
MIW06-12D12		±12	±250	609			100#	82			
MIW06-12D15		±15	±200	609			100#	82			
MIW06-24S033	-	3.3	1200	214			470	77			
MIW06-24S05		5	1200	313			470	80			
MIW06-24S12		12	500	298			100	84			
MIW06-24S15	24	15	400	298	20	20	100	84			
MIW06-24S24	(18 ~ 36)	24	250	298	20	20	47	84			
MIW06-24D05		±5	±500	260						100#	80
MIW06-24D12		±12	±250	298							100#
MIW06-24D15		±15	±200	298				100#	84		
MIW06-48S033		3.3	1200	107			470	77			
MIW06-48S05		5	1200	156			470	80			
MIW06-48S12		12	500	149			100	84			
MIW06-48S15	48	15	400	149	10	45	100	84			
MIW06-48S24	(36 ~ 75)	24	250	149	10	15	47	84			
MIW06-48D05		±5	±500	130			100#	80			
MIW06-48D12		±12	±250	149	-		100#	84			
MIW06-48D15		±15	±200	149			100#	84			

For each output

P Total Power International, Inc.

MIW06 SERIES

DC/DC CONVERTER 6W, DIP-Package

Input Specifications

Parameter	Model	Min.	Тур.	Max.	Unit
	12V Input Models	-0.7		25	
Input Surge Voltage (1 sec. max.)	24V Input Models	-0.7		50	
	48V Input Models	-0.7		100	
	12V Input Models	7	8	9	
Start-Up Voltage	24V Input Models	14	16	18	VDC
	48V Input Models	32	34	36	
	12V Input Models			8.5	
Jnder Voltage Shutdown	24V Input Models			16	
	48V Input Models			35	
Short Circuit Input Power				3000	mW
nternal Power Dissipation	All Models			2500	mW
Conducted EMI		Compliance to EN 55022, class A and FCC part 15, class A			

Output Specifications

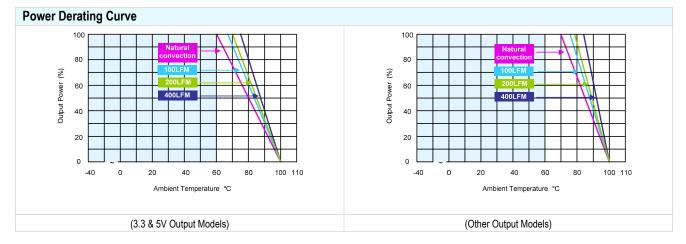
Parameter	Conditions	Min.	Тур.	Max.	Unit
Output Voltage Accuracy			±1.0	±2.0	%
Output Voltage Balance	Dual Output, Balanced Loads		±1.0	±2.0	%
Line Regulation	Vin=Min. to Max.		±0.1	±0.5	%
Load Regulation	Io=0% to 100%		±0.6	±1.2	%
Min.Load		No minimum Lo	oad Requirement		
Ripple & Noise (20MHz)			50	80	mV _{P-P}
Ripple & Noise (20MHz)	Over Line, Load % Temp.			100	mV _{P-P}
Transient Recovery Time	250/ Lood Stop Change		300	600	uS
Transient Response Deviation	25% Load Step Change		±3		%
Temperature Coefficient			±0.01	±0.02	%/°C
Over Load Protection	Foldback	110	145		%
Short Circuit Protection	Continuous				

General Specifications

Parameter	Condition	Conditions		Тур.	Max.	Unit
	60 Seconds	Standard 1500	1500			VDC
I/O Isolation Voltage (rated)	ou Seconds	Suffix H(note 6)	3000			VDC
I/O Isolation Resistance	500 VDC	500 VDC				MΩ
I/O Isolation Capacitance	100KHz, 1	100KHz, 1V		1000		pF
Switching Frequency				330		KHz
MTBF (calculated)	MIL-HDBK-217F@25°C	MIL-HDBK-217F@25°C, Ground Benign				Hours
Safety Approvals(pending)	UL/cUL 6	UL/cUL 60950-1 recognition(CSA certificate), IEC/EN 60950-1(CB-scheme)				

Input Fuse

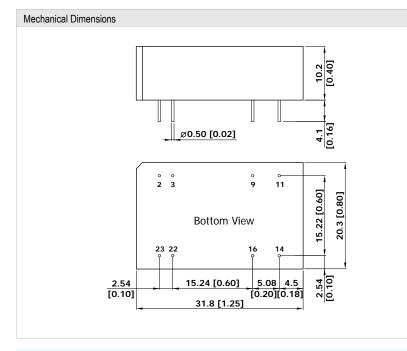
12V Input Models	24V Input Models	48V Input Models
1500mA Slow-Blow Type	700mA Slow-Blow Type	350mA Slow-Blow Type


Environmental Specifications

Parameter	Conditions	Min.	Max.	Unit	
Operating Temperature Range (with Derating)	Ambient	-40	+85	C°	
Case Temperature			+100	C°	
Storage Temperature Range		-50	+125	C°	
Humidity (non condensing)			95	% rel. H	
Cooling	Free-Air convection				
Lead Temperature (1.5mm from case for 10Sec.) 260				°C	

⁷ Total Power International, Inc.

MIW06 SERIES


DC/DC CONVERTER 6W, DIP-Package

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%
- Ripple & Noise measurement bandwidth is 0-20MHz. 3
- All DC/DC converters should be externally fused at the front end for protection. 4
- 5 Other input and output voltage may be available, please contact factory.
- 6 To order the converter at 3KVDC isolation, please add a suffix H (e.g. MIW06-12S05H) to order code.
- 7 Specifications subject to change without notice.

Package Specifications

Pin Connections				
Pin	Single Output	Dual Output		
2	-Vin	-Vin		
3	-Vin	-Vin		
9	No Pin	Common		
11	NC	-Vout		
14	+Vout	+Vout		
16	-Vout	Common		
22	+Vin	+Vin		
23	+Vin	+Vin		

NC: No Connection

All dimensions in mm (inches)

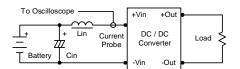
► Tolerance: X.X±0.25 (X.XX±0.01) X.XX±0.13 (X.XXX±0.005)

Pin diameter Ø 0.5 ±0.05 (0.02±0.002)

Physical Characteristics

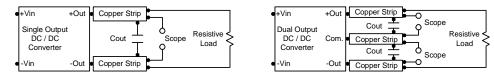
Case Size	:	31.8x20.3x10.2mm (1.25x0.80x0.40 Inches)
Case Material	:	Non-Conductive Black Plastic (flammability to UL 94V-0 rated)
Weight	:	12.7g

Protal Power International, Inc.


MIW06 SERIES

DC/DC CONVERTER 6W, DIP-Package

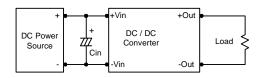
Test Configurations


Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin (4.7uH) and Cin (220uF, ESR < 1.0Ω at 100 KHz) to simulate source impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 KHz.

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47uF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.


Design & Feature Considerations

Overcurrent Protection

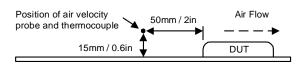
To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 KHz) capacitor of a 3.3uF for the 12V input devices and a 2.2uF for the 24V and 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3uF capacitors at the output.



Maximum Capacitive Load

The MIW06 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 100°C. The derating curves are determined from measurements obtained in a test setup.

